11255 measured reflections

 $R_{\rm int} = 0.069$

2790 independent reflections

1968 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl (Z)-2-(4-chlorobenzylidene)-3oxobutanoate

Shaaban K. Mohamed,^a Antar A. Abdelhamid,^b Atash V. Gurbanov,^b A. M. Maharramov^b and Seik Weng Ng^{c*}

^aSchool of Biology, Chemistry and Material Science, Manchester Metropolitan University, Manchester, England, ^bDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 6 January 2011; accepted 6 January 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.065; wR factor = 0.201; data-to-parameter ratio = 17.9.

The C=C double-bond in the title compound, $C_{13}H_{13}ClO_3$, has a Z configuration. The aliphatic substituents at one end of the double bond, *i.e.* the CH_3CO_- and $C_2H_5O_2C_-$ groups, are aligned at 82.1 $(3)^{\circ}$ with respect to each other.

Related literature

For related structures, see: Deng et al. (2007); Shi (2008).

Experimental

Crystal data

C ₁₃ H ₁₃ ClO ₃	V = 1242.49 (13) Å ³
$M_r = 252.68$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 9.9956 (6) Å	$\mu = 0.30 \text{ mm}^{-1}$
b = 7.7487 (5) Å	T = 295 K
c = 16.2709 (10) Å	$0.20 \times 0.20 \times 0.20$ mm
$\beta = 99.624 \ (1)^{\circ}$	

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.942, T_{\max} = 0.942$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ 156 parameters $wR(F^2) = 0.201$ H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$ 2790 reflections

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Manchester Metropolitan University, Baku State University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2789).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Deng, P.-F., Chen, G.-B., Feng, Y.-Q. & Song, J. (2007). Acta Cryst. E63, 03532. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Shi, X. (2008). Acta Cryst. E64, 02462.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o365 [doi:10.1107/S1600536811000717]

Ethyl (Z)-2-(4-chlorobenzylidene)-3-oxobutanoate

S. K. Mohamed, A. A. Abdelhamid, A. V. Gurbanov, A. M. Maharramov and S. W. Ng

Comment

Trizma is a mildly-basic primary aminoalcohol that catalyzes Knoevenagel condensation reactions. The yield can be high under microwave irradiation; the title compound has been synthesized albeit by a conventional route. The carbon-carbon double-bond in $C_{13}H_{13}ClO_3$ has a Z-configuration. The aliphatic substituents at one end of the double-bond, *i.e.*, the CH₃CO– and planar $C_2H_5O_2C$ – groups, are aligned at 82.1 (3) ° with respect to each other. Bond dimensions in the molecule compare favorably with those found in similar molecules (Deng *et al.*, 2007; Shi, 2008).

Experimental

Trizma (0.01 mol), *p*-chlorobenzaldehyde (0.01 mol) and ethyl acetoacetate (0.02 mol) were heated in ethanol (50 ml) for 3 h. The reaction was monitored with TLC. The solid that separated was collected and recrystallized from ethanol to give a colorless crystals, m.p. 373 K (60% yield).

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{13}H_{13}ClO_3$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Ethyl (Z)-2-(4-chlorobenzylidene)-3-oxobutanoate

Ci ysiai aala
C ₁₃ H ₁₃ ClO ₃
$M_r = 252.68$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 9.9956 (6) Å
<i>b</i> = 7.7487 (5) Å
<i>c</i> = 16.2709 (10) Å

Crystal data

F(000) = 528 $D_{\rm x} = 1.351 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 3560 reflections $\theta = 2.2-27.8^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 295 K $\beta = 99.624 (1)^{\circ}$ $V = 1242.49 (13) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII diffractometer	2790 independent reflections
Radiation source: fine-focus sealed tube	1968 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.069$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.942, \ T_{\max} = 0.942$	$k = -10 \rightarrow 9$
11255 measured reflections	$l = -21 \rightarrow 21$

Prism, colorless

 $0.20\times0.20\times0.20~mm$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.201$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1314P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2790 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
156 parameters	$\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.52 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.17886 (7)	0.43778 (11)	0.15024 (4)	0.0663 (3)
01	0.2270 (2)	0.3753 (3)	0.72305 (11)	0.0703 (6)
O2	0.42363 (15)	0.4336 (2)	0.59728 (11)	0.0555 (5)
O3	0.27248 (13)	0.6486 (2)	0.56982 (10)	0.0452 (4)
C1	0.13562 (19)	0.3488 (3)	0.41918 (13)	0.0399 (5)
C2	0.2540 (2)	0.4199 (3)	0.39776 (14)	0.0453 (6)
H2A	0.3252	0.4497	0.4397	0.054*
C3	0.2669 (2)	0.4463 (3)	0.31626 (14)	0.0467 (6)
Н3	0.3460	0.4940	0.3031	0.056*
C4	0.1611 (2)	0.4015 (3)	0.25368 (14)	0.0437 (5)
C5	0.0440 (2)	0.3274 (3)	0.27150 (14)	0.0490 (6)
H5	-0.0258	0.2957	0.2290	0.059*
C6	0.03270 (19)	0.3015 (3)	0.35374 (14)	0.0453 (5)
H6	-0.0458	0.2509	0.3662	0.054*
C7	0.11396 (19)	0.3175 (3)	0.50496 (14)	0.0418 (5)

H7	0.0387	0.2501	0.5098	0.050*
C8	0.18613 (19)	0.3714 (3)	0.57758 (13)	0.0405 (5)
C9	0.1549 (2)	0.3219 (3)	0.66085 (15)	0.0501 (6)
C10	0.0339 (3)	0.2111 (4)	0.66738 (18)	0.0693 (8)
H10A	0.0333	0.1832	0.7248	0.104*
H10B	0.0385	0.1068	0.6362	0.104*
H10C	-0.0476	0.2727	0.6453	0.104*
C11	0.3088 (2)	0.4853 (3)	0.58325 (13)	0.0395 (5)
C12	0.3811 (2)	0.7742 (3)	0.57098 (17)	0.0535 (6)
H12A	0.4275	0.7563	0.5239	0.064*
H12B	0.4466	0.7634	0.6219	0.064*
C13	0.3162 (3)	0.9486 (3)	0.56615 (18)	0.0592 (7)
H13A	0.3836	1.0353	0.5626	0.089*
H13B	0.2764	0.9679	0.6151	0.089*
H13C	0.2470	0.9546	0.5176	0.089*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0540 (4)	0.0967 (7)	0.0483 (4)	0.0031 (3)	0.0085 (3)	0.0024 (3)
01	0.0600 (11)	0.0996 (17)	0.0513 (11)	-0.0032 (11)	0.0095 (9)	0.0006 (10)
O2	0.0281 (8)	0.0621 (12)	0.0735 (12)	0.0041 (7)	-0.0001 (7)	0.0076 (8)
O3	0.0282 (7)	0.0479 (10)	0.0601 (9)	-0.0011 (6)	0.0091 (6)	-0.0004 (7)
C1	0.0237 (8)	0.0445 (12)	0.0514 (12)	-0.0006 (8)	0.0061 (8)	-0.0051 (9)
C2	0.0235 (9)	0.0614 (15)	0.0504 (12)	-0.0061 (9)	0.0049 (8)	-0.0091 (10)
C3	0.0280 (10)	0.0594 (15)	0.0533 (13)	-0.0052 (9)	0.0086 (9)	-0.0040 (10)
C4	0.0335 (10)	0.0524 (13)	0.0446 (11)	0.0046 (9)	0.0050 (8)	-0.0025 (10)
C5	0.0295 (10)	0.0605 (14)	0.0540 (13)	-0.0031 (10)	-0.0013 (9)	-0.0107 (11)
C6	0.0237 (9)	0.0528 (13)	0.0590 (13)	-0.0075 (9)	0.0060 (8)	-0.0092 (10)
C7	0.0246 (9)	0.0464 (12)	0.0555 (12)	-0.0016 (8)	0.0099 (8)	-0.0030 (10)
C8	0.0280 (9)	0.0422 (12)	0.0522 (12)	0.0038 (9)	0.0092 (8)	0.0033 (9)
C9	0.0405 (11)	0.0575 (15)	0.0545 (13)	0.0068 (10)	0.0147 (10)	0.0040 (11)
C10	0.0592 (16)	0.080 (2)	0.0759 (18)	-0.0097 (14)	0.0314 (14)	0.0065 (15)
C11	0.0284 (9)	0.0499 (13)	0.0400 (10)	0.0034 (9)	0.0046 (8)	0.0021 (9)
C12	0.0379 (11)	0.0576 (16)	0.0653 (14)	-0.0090 (10)	0.0092 (10)	0.0009 (12)
C13	0.0581 (16)	0.0522 (15)	0.0686 (17)	-0.0050 (12)	0.0140 (13)	-0.0020 (12)

Geometric parameters (Å, °)

Cl1—C4	1.745 (2)	С6—Н6	0.9300
O1—C9	1.213 (3)	С7—С8	1.344 (3)
O2—C11	1.201 (2)	С7—Н7	0.9300
O3—C11	1.325 (3)	C8—C9	1.491 (3)
O3—C12	1.456 (3)	C8—C11	1.501 (3)
C1—C6	1.400 (3)	C9—C10	1.502 (4)
C1—C2	1.401 (3)	C10—H10A	0.9600
C1—C7	1.468 (3)	C10—H10B	0.9600
C2—C3	1.369 (3)	C10—H10C	0.9600
C2—H2A	0.9300	C12—C13	1.495 (4)

supplementary materials

C3—C4	1.384 (3)	C12—H12A	0.9700
С3—Н3	0.9300	C12—H12B	0.9700
C4—C5	1.377 (3)	C13—H13A	0.9600
C5—C6	1.376 (3)	C13—H13B	0.9600
С5—Н5	0.9300	C13—H13C	0.9600
C11—O3—C12	116.98 (16)	O1—C9—C8	119.1 (2)
C6—C1—C2	117.2 (2)	O1—C9—C10	120.6 (2)
C6—C1—C7	118.26 (18)	C8—C9—C10	120.3 (2)
C2—C1—C7	124.50 (19)	C9—C10—H10A	109.5
C3—C2—C1	121.34 (19)	С9—С10—Н10В	109.5
C3—C2—H2A	119.3	H10A—C10—H10B	109.5
C1—C2—H2A	119.3	С9—С10—Н10С	109.5
C2—C3—C4	119.4 (2)	H10A—C10—H10C	109.5
С2—С3—Н3	120.3	H10B-C10-H10C	109.5
С4—С3—Н3	120.3	O2—C11—O3	125.2 (2)
C5—C4—C3	121.4 (2)	O2—C11—C8	124.1 (2)
C5—C4—Cl1	119.85 (17)	O3—C11—C8	110.72 (16)
C3—C4—Cl1	118.72 (18)	O3—C12—C13	106.71 (18)
C6—C5—C4	118.5 (2)	O3—C12—H12A	110.4
С6—С5—Н5	120.8	C13—C12—H12A	110.4
С4—С5—Н5	120.8	O3—C12—H12B	110.4
C5—C6—C1	122.12 (19)	C13—C12—H12B	110.4
С5—С6—Н6	118.9	H12A—C12—H12B	108.6
С1—С6—Н6	118.9	С12—С13—Н13А	109.5
C8—C7—C1	130.0 (2)	С12—С13—Н13В	109.5
С8—С7—Н7	115.0	H13A—C13—H13B	109.5
С1—С7—Н7	115.0	С12—С13—Н13С	109.5
С7—С8—С9	123.8 (2)	H13A—C13—H13C	109.5
C7—C8—C11	123.3 (2)	H13B—C13—H13C	109.5
C9—C8—C11	112.85 (19)		
C6—C1—C2—C3	1.7 (3)	C1—C7—C8—C11	1.8 (4)
C7—C1—C2—C3	-179.6 (2)	C7—C8—C9—O1	179.1 (2)
C1—C2—C3—C4	-0.2 (4)	C11—C8—C9—O1	0.2 (3)
C2—C3—C4—C5	-1.3 (4)	C7—C8—C9—C10	-2.4 (4)
C2—C3—C4—Cl1	179.48 (18)	C11—C8—C9—C10	178.7 (2)
C3—C4—C5—C6	1.2 (4)	C12—O3—C11—O2	1.0 (3)
Cl1—C4—C5—C6	-179.59 (18)	C12—O3—C11—C8	-178.29 (18)
C4—C5—C6—C1	0.4 (4)	C7—C8—C11—O2	-99.3 (3)
C2—C1—C6—C5	-1.8 (3)	C9—C8—C11—O2	79.6 (3)
C7—C1—C6—C5	179.4 (2)	C7—C8—C11—O3	80.1 (3)
C6—C1—C7—C8	-169.6 (2)	C9—C8—C11—O3	-101.1 (2)
C2—C1—C7—C8	11.7 (4)	C11—O3—C12—C13	-172.43 (19)
C1—C7—C8—C9	-177.0 (2)		

